6pangkat 3 yaitu 216 dan 7 pangkat 3 yaitu 343, jadi yang berikutnya adalah 6 dengan demikian, akar pangkat 3 dari bilangan 314.432 yaitu 68. Faktorisasi prima dari 343 yaitu 7 x 7 x 7 = 7^3. Source: www.sumberilmuku.my.id. Materi dan contoh soal akar pangkat 3 kelas 6. Soal matematika kelas 5 sd pangkat dan akar. Source: lembaredu.github.io Photo by Roman Mager on Unsplash Mencari bentuk sederhana dari akar adalah hal yang akan kamu lakukan ketika belajar ilmu matematika di sekolah. Bentuk akar dalam matematika adalah akar dari sebuah bilangan yang hasilnya tidak termasuk dalam 2 kategori bilangan, yaitu bilangan rasional, bilangan yang meliputi bilangan cacah, bilangan prima, dan berbagai bilangan lain yang termasuk ke dalamnya atau bilangan irasional, bilangan yang memiliki hasil pembagian yang tidak pernah berhenti. Bentuk akar adalah bentuk lain yang bisa kamu gunakan untuk menyebutkan suatu bilangan yang berpangkat. Walaupun hasilnya bukan termasuk dalam bilangan rasional maupun bilangan irasional, bentuk akar sendiri termasuk ke dalam kategori bilangan irasional, dimana bilangan irasional tidak bisa disebutkan dengan menggunakan bilangan pecahan a/b, a serta b bilangan bulat a dan b β‰  0. Bilangan dari bentuk akar merupakan suatu bilangan yang ada di dalam tanda √ yang disebut sebagai tanda akar. Beberapa contoh bilangan irasional di dalam bentuk akar yakni √2, √6, √7, √11 dan lain sebagainya. Menyederhanakan bilangan pecahan sering muncul pada soal-soal ujian matematika, maka saatnya bagi kamu untuk mengetahui bagaimana caranya mencari bentuk sederhana dari akar. Kita sudah mengetahui bahwa bentuk akar adalah akar dari sebuah bilangan yang hasilnya tidak termasuk dalam bilangan rasional dan irasional. Ternyata bilangan akar juga memiliki sifat-sifat yang harus kita ketahui. Beberapa diantaranya adalah √aΒ² = a √a x b = √a x √b ; a β‰₯ 0 dan b β‰₯ 0 √a/b = √a / √b ; a β‰₯ 0 dan b β‰₯ 0 Nah setelah kita mengetahui pengertian dan juga sifat-sifat dari bentuk akar, saatnya kita mengetahui cara menyederhanakannya. Syarat Bentuk Sederhana dari Akar Menyederhanakan bentuk akar juga bisa disebut dengan proses merasionalkan bentuk akar. Dalam proses menyederhanakan bentuk akar ini, ada beberapa syarat yang harus kamu perhatikan, seperti 1. Tidak memuat faktor yang pangkatnya lebih dari satu √a = ; a > 0 β‡’ Bentuk sederhana rasional √aΒ³ dan √a5 β‡’ Bukan bentuk sederhana 2. Tidak adanya bentuk akar pada penyebut √a / b β‡’ Bentuk sederhana rasional 1 / √a β‡’ Bukan bentuk sederhana 3. Tidak mengandung pecahan pada bentuk akar √10 / 2β‡’ Bentuk sederhana rasional √5/2β‡’ Bukan bentuk sederhana Merasionalkan Penyebut Pecahan Bilangan Bentuk Akar Kamu juga akan sering menemukan pertanyaan yang meminta kamu untuk merasionalkan pecahan yang Memiliki penyebut berbentuk akar. Merasionalkan penyebut pecahan dalam bilangan bentuk akar, akan mengubah penyebut dari pecahan yang berbentuk akar tersebut menjadi bentuk yang rasional sederhana. Beberapa metode yang bisa digunakan adalah seperti berikut ini Kesimpulan bentuk akar adalah akar dari sebuah bilangan yang hasilnya tidak termasuk dalam bilangan rasional dan irasional. Untuk bisa mendapatkan bentuk sederhana dari akar, ada syarat-syarat yang harus kamu ikuti. Apakah ada hal yang membuat kamu bingung? Jika ada, kamu bisa menuliskannya di kolom komentar. Dan jangan lupa untuk memberikan pengetahuan ini ke orang banyak! Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. You May Also Like
Akaryang sama di sini tidak disebut akar kembar, karena melibatkan dua persamaan kuadrat. Misalnya : Persamaan x 2 β€” 5x + 6 = 0 dan x 2 β€” 2x β€” 3 = 0 memiliki sebuah akar persekutuan yaitu x= 3; Persamaan x 2 β€” 7x + 12 =0 dan 2x 2 β€” 14x + 24 = 0 memiliki dua buah akar persekutuan, yaitu x=3 dan x = 4; Persamaan kuadrat memiliki 2 akar.
Kelas 11 SMAPolinomialTeorema FaktorTeorema FaktorPolinomialALJABARMatematikaRekomendasi video solusi lainnya0408Jika x^2-x-2 merupakan faktor dari polinom Px=2x^4-3x^3...0427Jika suku banyak fx=x^4-3x^3+5x^2-4x+a dibagi x-3 bersi...0634Diketahui fx adalah suku banyak. Jika fx dibagi denga...0104Di bawah ini yang merupakan faktor dari x^2+2x-8 adalah ...Teks videodisini akan dicari nilai daripada X 1 ^ 3 + x 2 ^ 3 + x 3 ^ 3 di mana ini nilainya sama saja dengan X1 ditambah x2 + x 3 pangkat 3 dikurang 3 x 1 ditambah x 2 + x 3 kemudian dikalikan dengan X1 * x2 + x 1 * x 3 + x 2 x dengan x 3 kemudian ditambah dengan 3 * x 1 * x 2 x dengan x 3 Nah untuk mendapatkan elemen-elemenMaka kita bisa menggunakan teorema vieta yaitu untuk polinomial berderajat 3 maka penjumlahan akar-akar nya yaitu X1 ditambah x2 + x3 = minus B A B di sini merupakan koefisien dari pada x kuadrat berarti nilainya di sini adalah 1 sehingga kita bisa tulis minus 1 per nilai a yaitu koefisien daripada X berpangkat 3 itu juga nilainya adalah 1 sehingga Ini hasilnya = min 1 Kemudian yang kedua itu adalah X1 * x2 + x 2 * x 3 + x 1 x X3 yaitu = c. A di mana nilai c merupakan koefisien dari pada X di sini nilainya adalah 1 kemudian ajukan nilainya adalah 1Sehingga hasilnya di sini adalah 1 kemudian 1 dikali x 2 x dengan x 3 yaitu = minus d. A dimana nilai D yaitu 6 sehingga disini menjadi minus 6 per 1 atau sama dengan minus 6 Nah setelah didapatkan ini maka kita tinggal subtitusi ke rumus untuk mendapatkan nilai dari X1 ^ 3 + x 2 ^ 3 + x 3 ^ 3 x 1 + x2 + x3 kita ganti nilainya menjadi minus 1 sehingga disini menjadi minus 1 pangkat 3 dikurang 3 x min 1 kemudian ini kita ganti nilainya menjadi 1 dan selanjutnya yaitu di sini kita ganti menjadi nilainya adalah minus6 Nah selanjutnya kita lanjutkan perhitungannya maka diperoleh min 1 ditambah 3 dikurang 18 ini = minus 16 atau pada opsi bagian A sekian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Berikutini adalah soal & pembahasan materi persamaan kuadrat (untuk tingkat SMA/Sederajat), tetapi sebagian juga cocok untuk dipelajari siswa kelas 9 SMP. Semoga bermanfaat dan dapat dijadikan referensi belajar. Soal dikumpulkan dari berbagai sumber dan pembahasannya dibuat sendiri oleh penulis.
ο»ΏPersamaan kuadrat adalah salah satu persamaan matematika dari variabel yang mempunyai pangkat tertinggi dua. Bentuk umum dari persamaan kuadrat atau PK adalah sebagai berikut ax2 +bx + c = 0 dengan x merupakan variabel, a, b merupakan koefisien, dan c merupakan konstanta. Nilai a tidak sama dengan nol. Bentuk GrafikAkar-akar Persamaan Kuadrat PKMacam-macam Akar PKMencari Akar-akar Persamaan KuadratMenyusun Persamaan Kuadrat Baru Bentuk Grafik Persamaan kuadrat jika digambarkan dalam bentuk koordinat kartesian x,y maka akan membentuk grafik parabolik. Oleh karena itu persamaan kuadrat juga sering disebut sebagai persamaan parabola. Berikut contoh bentuk persamaan tersebut dalam bentuk grafik parabolik. Pada persamaan kudrat umum nilai a, b, dan c sangat mempengaruhi pola parabolik yang dihasilkan. Nilai a menentukan cekung atau cembungnya kurva parabola. Jika nilai dari a>0, maka parabola akan terbuka ke atas cekung. Sebaliknya, jika a0 Jika nilai D>0 dari suatu PK, maka akan menghasilkan akar-akar persamaan yang real namun memiliki akar-akar yang berlainan. Dengan kata lain x1 tidak sama dengan x2. Contoh persamaan akar real D>0 Tentukan jenis akar persamaan dari persamaan x2 + 4x + 2 = 0 . Penyelesaiana = 1; b = 4; dan c = 2 D = b2 – 4ac D = 42 – 412D = 16 – 8D = 8Jadi karena nilai D>0, maka akar nya adalah jenis akar real. real sama x1=x2 D=0 Merupakan jenis akar persamaan kuadratyang menghasilkan akar-akar bernilai sama x1=x2. Contoh akar real D=0 Tentukan nilai akar-akar PK dari 2x2 + 4x + 2 = 0. Penyelesaiana = 2; b = 4; c = 2D = b2 – 4acD = 42 – 422D = 16 – 16D = 0 Jadi karena nilai D=0, maka terbukti akar real dan kembar. 3. Akar Imajiner / Tidak Real D<0 Jika nilai D<0 , maka akar dari persamaan kuadrat akan berbentuk imajiner/ tidak real. Contoh akar imajiner D<0/ Tentukan jenis akar dari persamaan x2 + 2x + 4 = 0 . Penyelesaiana = 1; b = 2; c = 4D = b2 – 4acD = 22 – 414D = 4 – 16D = -12 Jadi karena nilai D<0, maka akar persamaanya merupakan akar tidak real atau imajiner. Mencari Akar-akar Persamaan Kuadrat Untuk mencari hasil akar-akar persamaan kuadrat, terdapat beberapa metode yang dapat digunakan. Diantaranya yaitu faktorisasi, kuadrat sempurna, dan menggunakan rumus abc. Berikut penjelasan mengenai beberapa metode untuk mencari akar-akar persamaan. 1. Faktorisasi Faktorisasi/ pemfaktoran adalah suatu metode dalam mencari akar-akar dengan mencari nilai yang jika dikalikan maka akan menghasilkan nilai lain. Terdapat tiga bentuk persamaan kuadrat PK dengan faktorisasi akar-akar yang berbeda, yaitu No Bentuk persamaan Faktorisasi Akar-akar 1 x2 + 2xy + y2 = 0 x + y2 = 0 2 x2 – 2xy + y2 = 0 x – y2 = 0 3 x2 – y2 = 0 x + yx – y = 0 Berikut contoh soal mengenai penggunaan metode faktorisasi pada persamaan kuadrat. Selesaikan persamaan kuadrat 5x2+13x+6=0 menggunakan metode faktorisasi. Penyelesaian5x2 + 13x = 6 = 0 5x2 + 10x + 3x + 6 = 05xx + 2 + 3x + 2 = 05x + 3x + 2 = 05x = -3 atau x = -2Jadi, hasil dari penyelesaiannya adalah x = -3/5 atau x= -2 2. Kuadrat Sempurna Bentuk kuadrat sempurna merupakan bentuk persamaan kuadrat yang menghasilkan bilangan rasional. Hasil dari persamaan kuadrat sempurna umumnya menggunakan rumus sebagai berikut x+p2 = x2 + 2px + p2 Penyelesaian umum dari persamaan kuadarat sempurna ialah sebagai berikut x+p2 = x2 + 2px + p2 dengan pemisalan x+p2 = q , makax+p2 = q x+p = Β± q x = -p Β± q Berikut contoh soal mengenai penggunaan metode persamaan sempurna. Selesaikan persamaan x2 + 6x + 5 = 0 menggunakan metode persamaan kuadrat sempurna! Penyelesaianx2 + 6x +5 = 0 x2 + 6x = -5Langkah selanjutnya yaitu tambahkan satu angka di ruas kanan dan kiri hingga dapat berubah ke bentuk kuadrat + 6x + 9 = -5 + 9x2 + 6x + 9 = 4x+32 = 4x+3 = √4x = 3 Β± 2Jadi, hasil akhirnya adalah x = -1 atau x = -5 3. Rumus Kuadrat ABC Rumus abc merupakan alternatif pilihan ketika persamaan kuadrat sudah tidak bisa diselesaikan dengan metode faktorisasi maupun kuadrat sempurna. Berikut rumus formula abc pada persamaan kuadrat ax2 +bx + c = 0. Berikut contoh penyelesaian soal persamaan kudrat menggunakan formula abc. Selesaikan persamaan x2 + 4x – 12 = 0 menggunakan metode formula abc! Penyelesaianx2 + 4x – 12 = 0 dengan a=1, b=4, c=-12 Menyusun Persamaan Kuadrat Baru Jika sebelumnya kita telah belajar bagaimana mengetahui akar-akar dari persamaan tersebut, maka sekarang kita akan belajar menyusun persamaan kuadratnya dari akar-akar yang telah diketahui sebelumnya. Berikut beberapa cara yang dapat digunakan untuk menyusun PK baru. 1. Menyusun persamaan jika telah diketahui akar-akarnya Jika sebuah persamaan memiliki akar x1 dan x2, maka persamaan dari akar tersebut bisa dinyatakan dalam bentuk x- x1x- x2=0 Contoh Tentukan persamaan kuadrat dimana akar-akarnya diantaranya -2 dan 3. Penyelesaianx1 =-2 dan x2=3x-2x-3=0x+2x+3x2-3x+2x-6=0x2-x-6=0Jadi, hasil persamaan dari akar-akar tersebut adalah x2-x-6=0 2. Menyusun persamaan kuadrat jika jumlah serta hasil kali akar diketahui Jika akar-akar persamaan kuadratnya dengan jumlah dan kali x1 dan x2 telah diketahui, maka persamaan kuadratnya dapat diubah dalam bentuk sebagai berikut. x2- x1+ x2x+ Contoh Tentukan persamaan kuadrat yang memiliki akar 3 dan 1/2. Penyelesaianx1=3 dan x2= -1/2x1+ x2=3 -1/2 =6/2 – 1/2 = 5/ = 3 -1/2 = -3/2Sehingga, persamaan kuadratnya yaitux2- x1+ x2x+ 5/2 x – 3/2=0 masing-masing ruas dikali 2 2x2-5x-3=0 Jadi, persamaan kuadratnya dari akar 3 dan 1/2 adalah 2x2-5x-3=0 . Referensi Selanjutnyakita naikkan angka 6 ke atas seperti pada gambar di atas dan merupakan angka satuan dari hasil. Sehingga kita menemukan hasilnya adalah 36. Jadi akar kuadrat dari 1296 adalah 36. Agar semakin lancar dan mengerti mari kita simak contoh ketiga. Pada contoh ke tiga ini kita akan mencari akar pangkat dua dari 10609. Akar Kuadrat AdalahSebuah perhitungan matematika aljabar dari sebuah faktor angka dengan cara meng-kuadratkan yang menghasilkan angka tersebut disebut sebagai akar kuadrat.Di dalam matematika, akar kuadrat dari bilangan x sama dengan bilangan r sedemikian sehingga rΒ² = x, atau, di dalam perkataan lain, bilangan r yang bila dikuadratkan sama dengan Menghitung Akar Kuadrat Dengan FaktorisasiBerapakah akar dari 64 64 = 2 x 32 = 2 x 2 x 16 = 4 x 16 Maka akar 64 = akar 4 x akar 16 = 2 x 4 = 8 selesaiMisalkan berapa akar dari 72 72 = 9 x 8 = 9 x 4 x 2 = 3 x 2 x akar 2, sama dengan 6 akar 2 atau Sifat Akar-Akar Persamaan KuadratJika x1 dan x2 adalah akar-akar persamaan kuadrat ax2 + bx + c = 0, makax1 + x2 = –b/ = c/ax1 – x2 = –D/aMohon dingat! D = b2 – Akar Kuadrat√4 = 2 √9 = 3 √16 = 4 √25 = 5 √36 = 6 √49 = 7 √64 = 8 √81 = 9 √100 = 10 √169 = 13, karena 13 Γ— 13 = 169 √1225 = 35, karena 35 Γ— 35 = 1225Akar dari 11Akar dari dari dari 42Akar dari dari dari dari dari 93Akar dari dari dari dari dari dari x √48=48Akar dari 497Akar dari dari 10010Akar dari dari dari dari 48422Akar dari 62525Akar dari 122535Akar dari dari + √ – √ – √11 / √5cara menghitung √10 – √11 / √5 = – √11 x √5cara menghitung √10 – √11 x √5 = + √11 – √5cara menghitung √10 + √11 – √5 = + √11 / √5cara menghitung √10 + √11 / √5 = + √11 x √5cara menghitung √10 + √11 x √5 = x √11 + √5cara menghitung √10 x √11 + √5 = x √11 – √5cara menghitung √10 x √11 – √5 = x √11 – √5 + -√6cara menghitung √10 x √11 – √5 + -√6 = / √11 / √5cara menghitung √10 / √11 / √5 = / √11 – √5cara menghitung √10 / √11 – √5 = Menyederhanakan AkarBerikut ini adalah beberpa cara untuk menyederhanakan akar dengan caraMemfaktorkan Tujuan menyederhanakan akar kuadrat adalah menuliskannya dalam bentuk yang mudah dipahami dan digunakan dalam soal matematika. Dengan memfaktorkan, angka yang besar akan dipecahkan menjadi dua atau lebih angka β€œfaktor” yang lebih kecil, sebagai contohnya mengubah 9 menjadi 3 x 3. Setelah kita menemukan faktor ini, kita dapat menuliskan kembali akar kuadrat dalam bentuk yang lebih sederhana, terkadang bahkan mengubahnya menjadi bilangan bulat biasa. Sebagai contohnya, √9 = √3Γ—3 = 3. Ikuti langkah berikut ini untuk mempelajari proses ini dalam akar kuadrat yang lebih Bagi angka dengan bilangan prima terkecil yang mungkin. Jika angka yang berada di bawah tanda akar adalah bilangan genap, bagi dengan 2. Jika angkamu ganjil, maka cobalah bagi dengan 5. Jika tidak satupun dari pembagian ini memberikanmu hasil bilangan bulat, cobalah angka selanjutnya dalam daftar di bawah ini, membagi dengan setiap bilangan prima hingga mendapatkan bilangan bulat sebagai hasilnya. Anda hanya perlu menguji bilangan prima saja, karena semua angka lain memiliki bilangan prima sebagai faktornya. Sebagai contohnya, kamu tidak perlu menguji dengan angka 4, karena semua angka yang bisa dibagi 4 juga bisa dibagi 2, yang telah Anda coba sebelumnya 2, 3, 5, 7, 11, 13, 17, ulang akar kuadrat sebagai soal perkalian. Tetap tuliskan perkalian ini di bawah tanda akar, dan jangan lupa menyertakan kedua faktornya. Sebagai contoh, jika kamu mencoba menyederhanakan √98, Ikuti langkah di atas untuk menemukan bahwa 98 Γ· 2 = 49, jadi 98 = 2 x 49. Tulis ulang angka β€œ98” dalam bentuk akar kuadrat aslinya menggunakan informasi ini √98 = √2 x 49. Atau kalikan angka di dalam akar. Angka di dalam akar adalah angka yang berada di bawah tanda akar. Untuk mengalikan angka di dalam akar, kalikan angka-angka itu seperti mengalikan angka bulat. Pastikan untuk menuliskan hasil perkaliannya di bawah tanda akar. Contohnya √15x√5, Anda dapat menghitung 15Γ—5= 75. Jadi √15x√5=75Contoh Penyederhanaan Akar√75 = √25Γ—3 = √25 x √3 = 5√3Contoh soal, sederhanakan 5√24 + 3√3√18 + 2√32 Pembahasan 5√24 + 3√3√18 + 2√32 = 5√4 √6 + 3√3 √18 + 3√3 . 2√32 = √6 + 3√3 √9√2 + 3√3 .2√16√2 = 10√6 + 3√3 .3√2 + 3√3 . 2 .4√2 = 10√6 + 9√6 + 24√6 = 43√6Hitung dan sederhanakan a √2 + √4 + √8 + √16 b √3 + √9 + √27 c 2√2 + 2√8 + 2√32 Pembahasan a √2 + √4 + √8 + √16 = √2 + √4 + √4 √ 2 + √16 = √2 + 2 + 2√2 + 4 = 2 + 4 + √2 + 2√2 = 6 + 3√2 b √3 + √9 + √27 = √3 + √9 + √9 √3 = √3 + 3 + 3√3 = 3 + 4√3 c 2√2 + 2√8 + 2√32 = 2√2 + 2√4 √2 + 2√16 √2 = 2√2 + 2 2√2 + 24√2 = 2√2 + 4√2 + 8√2 = 14√2Menyelesaikan persamaan kuadrat dengan memfaktorkanax2 + bx + c = 0 dapat dinyatakan menjadi a x – x1 x – x2 = x1 dan x2 disebut akar-akar penyelesaian persamaan simetri akar-akar persamaan kuadratJumlah kuadrat akar-akar x12 + x22 = x1 + x22 – Jumlah pangkat tiga akar-akar x13 + x23 = x1 + x23 – + x2 Jumlah pangkat empat akar-akar x14 + x24 = x12 + x222 – Jenis Akar-akar PK dengan Nilai Diskriminan DJika D > 0 maka PK mempunyai 2 akar real yang berlainanβ†’ D = bilangan kuadrat berarti akar-akarnya rasionalβ†’ D bukan bilangan kuadrat berarti akar-akarnya irasionalJika D = 0 maka PK m,empunyai 1 akar real atau akar-akarnya kembarJika D β‰₯ 0 maka PK mempunyai 2 akar real/nyataJika D 0, x2 > 0D β‰₯ 0x1 + x2 > > 0Jika kedua akar negatif x1 0Jika kedua akar berlainan tanda 1 positif, 1 negatifD > 0Jika kedua akar saling berlawanan x1 = –x2D > 0b = 0 diperoleh dari x1 + x2 = 0 0c = aContoh 1 Tentukan nilai m agar x2 + 4x + m – 4 = 0 mempunyai 2 akar real D β‰₯ 0 b2 – 4ac β‰₯ 0 42 – – 4 β‰₯ 0 16 – 4m + 16 β‰₯ 0 –4m β‰₯ –16 – 16 Semua dibagi –4 Mohon dingat! Jika dibagi atau dikali bilangan negatif tanda pertidaksamaan dibalik m ≀ 4 + 4 m ≀ 8Menyusun PKPK dengan akar-akar x1 dan x2 adalahx2 – x1 + x2x + = 0dengan kata lainx2 – jumlah akar-akarx + hasil kali akar-akar = 0Contoh 1 Tentukan PK yang mempunyai akar-akar 2 dan –5 x2 – 2 + –5x + 2.–5 = 0 x2 + 3x – 10 = 0Contoh 2 Jika x1 dan x2 adalah akar-akar PK x2 – 3x – 1 = 0, susun PK baru yang akar-akarnya 3x1 + 2 dan 3x2 + 2! Karena PK tersebut tidak dapat difaktorkan, x1 + x2 = –b/a = –– 3 /1 = 3 = c/a = –1/1 = –1 Misal akar-akar PK baru adalah y1 dan y2 y1 + y2 = + 2 + + 2 = 3x1 + x2 + 4 = 9 + 4 = 13 = 3x1 + 2.3x2 + 2 = + + + 4 = 9.–1 + + 4 = –9 + 18 + 4 = 13 Jadi PK barunya x2 – y1 + y2x + = 0 x2 – 13x + 13 = 0 SoalTentukan nilai k agar persamaanΒ² kuadrat berikut memiliki akar kembara. xΒ²-2x+k=0 b. 2xΒ²-4x+k=0 c. kxΒ²-6x+1/2=0 d. 3xΒ²-kx+5=0 e. 2kxΒ²+3x+2=0Jawabansuatu persamaan kuadrat akan memiliki akar kembar jika D = 0 D = bΒ² – 4ac1.] xΒ² – 2x + k = 0 D = 0 4 – 4 . 1 . k = 0 4 – 4k = 0 4k = 4 k = 12.] 2xΒ² – 4x + k = 0 D = 0 16 – 4 . 2 . k = 0 16 – 8k = 0 8k = 16 k = 23.] kxΒ² – 6x + 1/2 = 0 36 – 4 . k . 1/2 = 0 36 – 2k = 0 2k = 36 k = 184.] 3xΒ² – kx + 5 = 0 D = 0 kΒ² – 4 . 3 . 5 = 0 kΒ² – 60 = 0 k = Β± √605.] 2kxΒ² + 3x + 2 = 0 D = 0 9 – 4 . 2k . 2 = 0 9 – 16k = 0 16k = 9 k = 9/16Fungsi Akar KuadratFungsi akar kuadrat utama biasanya hanya disebut sebagai β€œfungsi akar kuadrat” adalah fungsi yang memetakan himpunan bilangan real taknegatif R+ βˆͺ {0} kepada himpunan itu sendiri, dan, seperti semua fungsi, selalu memiliki nilai balikan yang tunggal. Fungsi akar kuadrat juga memetakan bilangan rasional ke dalam bilangan aljabar adihimpunan bilangan rasional; adalah rasional jika dan hanya jika x adalah bilangan rasional yang dapat dinyatakan sebagai hasil bagi dari dua kuadrat sempurna. Di dalam istilah geometri, fungsi akar kuadrat memetakan luas dari persegi kepada panjang setiap bilangan real x lihat nilai absolutUntuk setiap bilangan real taknegatif x dan y,danFungsi akar kuadrat adalah kontinu untuk setiap bilangan taknegatif x dan terdiferensialkan untuk setiap bilangan positif x. Turunannya diberikan olehDeret Taylor dari √1 + x di dekat x = 0 konvergen ke x kurang dari 124 / lebih kecil12^2 = 144 β€”-> terlalu besarkesimpulan sementara jawaban nya adalah 11 koma kemudian kita cari selisih antara 124 dan 121 β€”β€”> 124-121 = 3kemudian kita cari selisih kedua nilai terdekat 144 dan 121 β€”β€”> 144-121 = 23jadi kita peroleh pecahannya adalah 3/23sehingga di dapatkan jawaban akar dari 124 adalah 11 + 3/23 = 11,1322. Selesaikan x3 – 7x2 + 4x + 12 = 0Jawabanfx = x3 – 7x2 + 4x + 12Nilai yang mungkin adalah Β±1, Β±2, Β±3, Β±4, Β±6, Β±12Kita mendapatkan f–1 = –1 – 7 – 4 + 12 = 0Jadi, x + 1 adalah faktor dari fxx3 – 7x2 + 4x + 12 = x + 1x2 – 8x + 12 = x + 1x – 2x – 6Jadi, akarnya –1, 2, 623. Temukan akar fx = 2x3 + 3x2 – 11x – 6 = 0, mengingat bahwa itu memiliki setidaknya satu akar bilangan konstanta dalam persamaan yang diberikan adalah 6, kita tahu bahwa akar bilangan bulat harus menjadi faktor 6. Nilai yang mungkin adalah Β±1, Β±2, Β±3, Β±6Langkah 1 Gunakan teorema faktor untuk menguji nilai yang mungkin dengan trial and = 2 + 3 – 11 – 6 β‰  0 f–1 = –2 + 3 + 11 – 6 β‰  0 f2 = 16 + 12 – 22 – 6 = 0 Kami menemukan bahwa akar pangkat 2 Temukan akar lainnya dengan inspeksi atau dengan pembagian + 3x2 – 11x – 6 = x – 2ax2 + bx + c = x – 22x2 + bx + 3 = x – 22x2 + 7x + 3 = x – 22x + 1x +3Jadi, akarnya x= 2, – Β½, – 324. Jika diketahui dan adalah bilangan riil dengan dan . Jika dan , maka JawabanKalikan kedua persamaanSubtitusikan nilai ke pers. pertamaJadi Jawaban Bcatatan Sifat eksponen25. Selesaikan x2 – 4 x + 3 = 0Jawaban x2 – 4 x + 3 = 0 x – 3 x – 1 = 0 x – 3 = 0 atau x – 1 = 0 x = 3 atau x = 1Jadi, penyelesaian dari x2 – 4 x + 3 = 0 adalah 3 dan Tentukan himpunan penyelesaian dari x – 22 = x – – 22 = x – 2 x2 – 4 x + 4 = x – 2 x2 – 5 x + 6 = 0 x – 3 x – 2 = 0 x – 3 = 0 atau x – 2 = 0 x = 3 atau x = 2Jadi, himpunan penyelesaiannya adalah {3 , 2}.27. Tentukan penyelesaian dari 2 x2 + 7 x + 6 = 0Jawaban2 x2 + 7 x + 6 = 0 2 x2 + 4 x + 3 x + 6 = 0 2 x x + 2 + 3 x + 2 = 0 x + 2 2 x + 3 = 0 x +2 = 0 atau 2 x + 3 = 0 x = –2 atau x = – 1Jadi, penyelesaiannya adalah –2 dan –128. Tentukan himpunan penyelesaian dari x2 – 6 x + 5 = persamaan kuadrat dengan melengkapkan kuadrat sempurnaPersamaan kuadrat ax2 + bx + c = 0 dapat diselesaikan dengan mengubahnya menjadi x + p2 = – 6 x + 5 = 0 x2 – 6 x + 9 – 4 = 0 x2 – 6 x + 9 = 4 x – 32 = 4 x – 3 = 2 atau x – 3 = –2 x = 5 atau x = 1Jadi, himpunan penyelesaiannya adalah{ 1 , 5}.29. Tentukan penyelesaian dari 2 x2 – 8 x + 7 = x2 – 8 x + 7 = 0 2 x2 – 8 x + 8 – 1 = 0 2 x2 – 8 x + 8 = 1 2 x2 – 4 x + 4 = 1 2 x – 22 = 1 x – 22 = Β½x – 2 = atau x – 2 = –x = 2 + atau x = 2 – Jadi, penyelesaiannya adalah 2 + dan 2 – 30. Tentukan himpunan penyelesaian dari x2 + 7x – 30 = persamaan kuadrat dengan menggunakan rumusRumus penyelesaian persamaan kuadrat a x2 + b x + c = 0 adalahJawabx2 + 7x – 30 = 0a = 1 , b = 7 , c = – 30x = 3 atau x = –10Jadi, himpunan penyelesaiannya adalah {–10 , 3}.31. Soal Hasil √10 x √11 – √5 + -√6 x √10 x √11 – √5 + -√6 adalah…JawabanCara mengerjakan √10 x √11 – √5 + -√6 x √10 x √11 – √5 + -√6 = Soal Hasil √10 / √11 / √5 + √6 / √10 / √11 / √5 adalah…JawabanCara mengerjakan √10 / √11 / √5 + √6 / √10 / √11 / √5 = Soal √10 + √11 + √5 + √6 x √10 x √11 x √5 adalahJawabanCara mengerjakan √10 + √11 + √5 + √6 x √10 x √11 x √5 = Soal √10 + √11 + √5 + √6 – √10 – √11 – √5 adalahCara mengerjakan √10 + √11 + √5 + √6 – √10 – √11 – √5 = Soal √10 x √11 x √5 x √6 / √10 / √11 / √5 adalahCara mengerjakan √10 x √11 x √5 x √6 / √10 / √11 / √5 = LainnyaPangkat Eksponen – Integer – Daftar eksponensial bilangan bulat dan contoh soal dan jawabanPerhitungan Matematika Dengan Tanda Kurung, Perkalian dan Pembagian Selesaikan soal dibawah ini -+= – , ++= + , +-= – , -= ???Pangkat Matematika β€œTabel dari 1-100” – Pangkat 2, 3, Akar Pangkat 2 dan 3 – Beserta Contoh Soal dan JawabanPersamaan Pangkat 3 – Fungsi Kubik – Matematika Aljabar – Beserta Contoh Soal dan jawabanPersamaan Kuadrat – Rumus Kuadratis Rumus abc, Pembuktian rumus persamaan kuadrat, Diskriminan/determinan, Akar riil dan kompleks, Geometri, Rumus fungsi kuadratNilai Mutlak – Nilai absolut – Persamaan & Pertidaksamaan Contoh Soal dan JawabanTes Matematika Deret Angka – Bersama Cara Menghitung Kuadrat Dan Akar KuadratCara Membeli Tiket Pesawat Murah Secara Online Untuk Liburan Atau BisnisKopi Luwak Terlangka Dan Termahal Di DuniaTulisan Menunjukkan Kepribadian Anda & Bagaimana Cara Anda Menulis?Kepalan Tangan Menandakan Karakter Anda & Kepalan nomer berapa yang Anda miliki?Penyebab Dan Cara Mengatasi Iritasi Atau Lecet Pada Daerah Kewanitaan Akibat Pembalut WanitaApakah Produk Pembalut Wanita Aman?Organ Tubuh ManusiaSistem Reproduksi Manusia, Hewan dan TumbuhanNarkoba – Contoh, Jenis, Pengertian, Efek jangka pendek dan panjang10 Kebiasaan Baik Yang Dapat Mengasah Otak Menjadi Lebih EfektifTop 10 Cara Menjadi Kaya Dan Sudah Terbukti NyataSumber bacaan Math is Fun, Australian Mathematical Sciences Institute, Varsity TutorsPinter Pandai β€œBersama-Sama Berbagi Ilmu” Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing
Akarmonokotil (Jagung p.l) Perbesaran 10 x 10. Jam . Struktur Anatomi Akar Tumbuhan Monokotil. a. Epidermis, korteks, dan perisikel memiliki struktur, letak, dan fungsinya seperti pada akar tanaman dikotil. b. Xilem dan floem, seperti pada akar tanaman dikotil, tetapi letak keduanya saling berdekatan karena tidak memiliki cambium. c. Empulur,
Halaman Utama Β» Kalkulator Β» Mat Β» Kalkulator Akar Kuadrat Kalkulator akar kuadrat online pangkat 2. Akar kuadrat dari x adalah $$\sqrt{x}$$ Masukkan angka x, kemudian klik tombol "Hitung" untuk menampilkan hasil kalkulasi. Untuk akar pangkat x akar pangkat 3, 4, 5, ..., klik link dibawah ini Akar pangkat x Tabel Akar Kuadrat Akar kuadrat x - √xAngka x √11 √42 √93 √164 √255 √366 √497 √648 √819 √10010 √12111 √14412 √16913 √19614 √22515 √25616 √28917 √32418 √36119 √40020 √44121 √48422 √52923 √57624 √62525 4 Akar kuadrat 36 adalah 6. Angka yang bisa membagi 36 adalah angka 2, 3, 6, dan 12. Jika menggunakan angka 2, maka hasilnya 12 dan masih bisa dibagi lagi. Bilangan kecil memang mudah ditemukan, tetapi membuat proses lebih panjang. Jika menggunakan angka 12 sebagai bilangan paling besar, hasilnya angka 2. Postingan ini membahas tentang contoh soal operasi hitung bentuk akar yang terdiri dari penjumlahan bentuk akar, pengurangan bentuk akar, perkalian bentuk akar dan pembagian bentuk akar yang disertai penyelesaiannya atau pembahasannya. Lalu apa itu bentuk akar ?. Bentuk akar adalah akar dari suatu bilangan yang nilainya merupakan bilangan irasional. Contohnya adalah √ 2 , √ 3 , √ 8 , √ 50 dan akar dapat dijumlahkan atau dikurangkan jika bentuk akarnya sejenis atau sama. Sedangkan jika bentuk akarnya berbeda maka tidak bisa dijumlahkan atau dikurang. Contohnya sebagai berikut. √ 2 + √ 2 = 2 √ 2 .2 √ 5 + 3 √ 5 = 5 √ 5 5 √ 3 – 3 √ 3 = 2 √ 3 √ 3 + √ 2 = tidak bisa dijumlahkan karena bentuk akarnya √ 5 – 3 √ 3 = tidak bisa dikurangkan karena bentuk akarnya untuk perkalian dan pembagian, maka bentuk akarnya tidak harus sama. Contohnya sebagai berikut.√ 2 x √ 3 = √ 3 x 2 = √ 6 √ 10 √ 2 = √ 10 2 = √ 5 .2 √ 3 x 4 √ 5 = 8 √ 15 Sifat-sifat perkalian dan pembagian bentuk akar sebagai perkalian dan pembagian bentuk akarContoh soal 1Hasil dari 3 √ 12 + 2 √ 3 adalah…A. 8 √ 15 B. 5 √ 15 C. 8 √ 3 D. 5 √ 3 .Penyelesaian soal / pembahasanPerlu diingat bentuk akar dapat dijumlah atau dikurang jika bentuk akar sama. Jadi untuk menjawab soal ini samakan dahulu bentuk akarnya kemudian dijumlahkan seperti dibawah ini3 √ 12 + 2 √ 3 = 3 √ 4 x 3 + 2 √ 3 = 2 x 3 √ 3 + 2 √ 3 = 6 √ 3 + 2 √ 3 = 6 + 2 √ 3 = 8 √ 3 Jadi soal nomor 1 jawabannya adalah soal 2 √ 18 + √ 8 = A. 6 √ 2 B. 5 √ 2 C. 4 √ 2 D. 3 √ 2 Penyelesaian soal / pembahasan √ 18 + √ 8 = √ 9 x 2 + √ 4 x 2 √ 18 + √ 8 = 3 √ 2 + 2 √ 2 = 3 + 2 √ 2 = 5 √ 2 Soal ini jawabannya soal pengurangan bentuk akarContoh soal 1Hasil dari √ 45 – 3 √ 80 adalah…A. -15 √ 5 B. -9 √ 5 C. 3 √ 5 D. 4 √ 5 .Penyelesaian soal / pembahasanSamakan dahulu bentuk akarnya, kemudian dikurangkan seperti dibawah ini. √ 45 – 3 √ 80 = √ 9 x 5 – 3 √ 16 x 5 = 3√ 5 – 3 x 4√ 5 = 3√ 5 – 12√ 5 = 3 – 12 √ 5 = – 9 √ 5 Jadi jawaban soal 1 adalah soal 2Hasil dari √ 1000 – 2 √ 40 adalah …A. 6 √ 10 B. 8 √ 10 C. 10 √ 10 D. 2 √ 10 .Penyelesaian soal / pembahasanLangkah langkah menjawab soal nomor 3 sebagai berikut √ 1000 – 2 √ 40 = √ 100 x 10 – 2 √ 4 x 10 = 10√ 10 – 2 x 2 √ 10 = 10 – 4 √ 10 = 6 √ 10 Soal nomor 2 jawabannya soal 3Hasil dari 3 √ 2 + 5 √ 8 – √ 32 adalah…A. 4 √ 2 B. 6 √ 2 C. 8 √ 2 D. 9 √ 2 .Penyelesaian soal / pembahasanSamakan bentuk akarnya kemudian dijumlahkan dan dikurangkan seperti dibawah ini3 √ 2 + 5 √ 8 – √ 32 = 3 √ 2 + 5 √ 4 x 2 – √ 16 x 2 .= 3 √ 2 + 5 x 2 √ 2 – 4 √ 2 = 3 √ 2 + 10 √ 2 – 4 √ 2 .= 3 + 10 – 4 √ 2 = 9 √ 2 .Jadi jawaban soal 3 adalah soal 4Hasil dari √ 48 + 2 √ 27 – √ 147 adalah…A. √ 3 B. 2 √ 3 C. 3 √ 3 D. 4 √ 3 .Penyelesaian soal / pembahasanJawaban soal 4 sebagai berikut √ 48 + 2 √ 27 – √ 147 = √ 16 x 3 + 2 √ 9 x 3 – √ 49 x 3 = 4 √ 3 + 2 x 3 √ 3 – 7 √ 3 .= 4 + 6 – 7 √ 3 = 3 √ 3 Jadi soal nomor 4 jawabannya adalah soal 5Bentuk sederhana dari √ 75 + 2 √ 3 – √ 12 + √ 27 adalah…A. 2 √ 3 B. 5 √ 3 C. 8 √ 3 D. 12 √ 3 E. 34 √ 3 .Penyelesaian soal / pembahasanCara menjawab soal ini sebagai berikut √ 25 x 3 + 2 √ 3 – √ 4 x 3 – √ 9 x 3 5 √ 3 + 2 √ 3 – 2 √ 3 – 3 √ 3 5 + 2 – 2 – 3 √ 3 = 2 √ 3 Jawaban soal ini adalah soal perkalian bentuk akarContoh soal 1Hasil dari 2 √ 3 x 3 √ 3 = … A. 6B. 6 √ 3 C. 18 D. 18 √ 3 Penyelesaian soal / pembahasanDengan menggunakan sifat perkalian bentuk akar diperoleh hasil sebagai √ 3 x 3 √ 3 = 2 x 3 √ 3 x 3 = 6 x 3 = 18Soal ini jawabannya soal 2Hasil dari 3 √ 7 x √ 8 + 5 √ 14 adalah…A. 15 √ 29 B. 11 √ 29 C. 15 √ 14 √ 14 .Penyelesaian soal / pembahasanUntuk menjawab soal ini sebagai √ 7 x √ 8 + 5 √ 14 = 3 x √ 7 x 8 + 5 √ 14 = 3 √ 7 x 2 x 4 + 5 √ 14 = 3 √ 4 x 14 + 5 √ 14 = 3 x 2 + 5 √ 14 = 11 √ 14 .Jadi jawabannya soal 3Hasil dari 3 √ 6 x 2 √ 2 + 4 √ 3 adalah…A. 15 √ 3 B. 16 √ 3 C. 28 √ 3 D. 50 √ 3 .Penyelesaian soal / pembahasanTentukan terlebih dahulu hasil perkalian bentuk akar3 √ 6 x 2 √ 2 + 4 √ 3 = 3 x 2 x √ 6 x 2 + 4 √ 3 = 6 √ 12 + 4 √ 3 = 6 √ 4 x 3 + 4 √ 3 = 6 x 2 + 4 √ 3 = 16 √ 3 .Jadi jawaban soal diatas adalah soal 4Hasil dari 5 √ 5 x √ 48 √ 12 adalah…A. 10 √ 5 B. 10 √ 2 C. 5 √ 5 D. 5 √ 2 .Penyelesaian soal / pembahasanUntuk menjawab soal ini kita tentukan dahulu hasil dari pembagian akar √ 48 √ 12 = √ 48 12 . √ 48 √ 12 = √ 4 = hasil keseluruhan adalah 5 √ 5 x 2 = 10 √ 5 atau jawaban soal 5Bentuk sederhana dari 2 √ 5 + 3 √ 7 3 √ 5 – 2 √ 7 adalah …A. -52 + 5 √ 35 B. -52 + 13 √ 35 C. -32 + 5 √ 35 D. -12 – 5 √ 35 E. -12 + 5 √ 35 .Penyelesaian soal / pembahasanUntuk menyelesaikan soal ini kita lakukan kali silang sebagai berikut2 √ 5 x 3 √ 5 + 2 √ 5 x -2 √ 7 + 3 √ 7 x 3 √ 5 + 3 √ 7 x -2 √ 7 .2 x 5 – 4 √ 35 + 9 √ 35 – 6 x 710 – 42 + 5 √ 35 .-32 + 5 √ 35 .Jawaban soal ini adalah soal pembagian bentuk akarContoh soal 1Bentuk 2√2 dapat dinyatakan menjadi …A. √ 2 2 B. √ 2 C. 2 √ 2 D. 2 √ 2 √2 Penyelesaian soal / pembahasanCara menjawab soal ini sebagai x √ 2 √2 = 2 √ 2 2 = √ 2 Soal ini jawabannya soal 2Bentuk sederhana dari 2 √ 98 + 3 √ 72 5 √ 75 – 3 √ 48 adalah …A. 32√2/21 B. 32√3/21 C. 32√5/39 D. 32√6/ soal / pembahasanHasil penjumlahan pembilang2 √ 98 + 3 √ 72 = 2 √ 49 x 2 + 3 √ 36 x 2 .= 2 x 7 √ 2 + 3 x 6 √ 2 = 14 + 18 √ 2 = 32 √ 2 .Hasil pengurangan penyebut5 √ 75 – 3 √ 48 = 5 √ 25 x 3 – 3 √ 16 x 3 = 5 x 5 √ 3 – 3 x 4 √ 3 .= 25 – 12 √ 3 = 13 √ 3 .Jadi hasil pembagian soal diatas adalah32 √ 2 13√3 x √ 3 √3 = 32 √ 6 39 Jadi soal ini jawabannya soal 3Bentuk sederhana dari 2 √ 54 + 4 √ 6 4 √ 8 – 3 √ 2 adalah…A. 2 √ 12 B. 5 √ 2 C. 6 √ 10 D. 2 √ 3 .Penyelesaian soal / pembahasanHasil penjumlahan pembilang2 √ 54 + 4 √ 6 = 2 √ 9 x 6 + 4 √ 6 = 2 x 3 √ 6 + 4 √ 6 .= 6 + 4 √ 6 = 10 √ 6 .Hasil pengurangan penyebut4 √ 8 – 3 √ 2 = 4 √ 4 x 2 – 3 √ 2 = 4 x 2 √ 2 – 3 √ 2 .= 8 – 3 √ 2 = 5 √ 2 .Jadi diperoleh hasil akhir sebagai berikut10 √ 6 5√2 = 2 √ 3 Jawaban soal ini D. contohsoal dan pembahasan tentang bentuk akar contoh soal dan pembahasan tentang merasionalkan bentuk akar contoh soal dan pembahasan tentang penjumlahan bentuk akar contoh soal dan pembahasan 6 b. 6√2 c. 12 d. 12√2 Pembahasan: Jawaban: C 9. Hasil dari 2√8 x √3 adalah a. 6√6 b. 6√3 c. 4√6 d. 4√3 Pembahasan: Artikel Matematika kelas 9 kali ini menjelaskan mengenai cara menyusun persamaan kuadrat baru secara lengkap, disertai dengan contoh soal dan pembahasannya. β€” Di artikel sebelumnya, kita sudah belajar cara mencari akar-akar dari persamaan kuadrat. Masih ingat nggak dengan bentuk umum persamaan kuadrat? Yup! Bentuk umum persamaan kuadrat adalah ax2 + bx + c = 0 dengan a, b, c merupakan bilangan real dan a β‰  0 Nah, kali ini kebalikannya, nih. Kita akan belajar cara menyusun persamaan kuadrat dari akar-akar yang diketahui. Wah, gimana tuh caranya? Oke, daripada penasaran, yuk simak artikel berikut ini! Ada dua metode untuk menyusun persamaan kuadrat. Metode yang pertama, jika diketahui akar-akar persamaan kuadratnya. Lalu, metode yang kedua, jika diketahui jumlah dan hasil kali dari akar-akar persamaan kuadratnya. Nanti pas ngerjain soal, kamu pilih deh pakai metode yang mana, menyesuaikan dengan yang diketahui di soal. 1. Cara Menyusun Persamaan Kuadrat Jika Diketahui Akar-akarnya Misalnya, diketahui akar-akar persamaan kuadrat adalah x1 dan x2. Untuk mendapatkan persamaan kuadratnya, kamu bisa substitusi akar-akar tersebut ke persamaan berikut Baca juga Cara Menghitung Luas dan Volume Kerucut Kenapa sih harus disubstitusi ke persamaan itu? Kamu masih ingat nggak, kalau ingin mendapatkan akar-akar dari suatu persamaan kuadrat, salah satu caranya adalah dengan memfaktorkan persamaan kuadrat tersebut. Nah, bentuk persamaan x – x1x – x2 = 0 adalah hasil dari pemfaktoran persamaan kuadrat. Kalau kita lakukan sedikit operasi aljabar, kita kali silang persamaan itu, maka akan didapat suatu persamaan kuadrat. Oke, supaya lebih paham, perhatikan contoh soal di bawah ini, yuk! Contoh soal 1 Tentukan persamaan kuadrat yang akar-akarnya adalah 3 dan -7. Penyelesaian Diketahui akar-akar persamaan kuadrat adalah 3 dan -7. Berarti, kamu bisa tulis x1 = 3 dan x2 = -7. Kemudian, kedua akar tersebut bisa kamu substitusikan ke persamaan x – x1x – x2 = 0, sehingga penyelesaiannya menjadi sebagai berikut x – 3x – -7 = 0 x – 3x + 7 = 0 x2 + 7x – 3x – 21 = 0 x2 + 4x – 21 = 0 Jadiii, persamaan kuadrat yang akar-akarnya 3 dan -7 adalah x2 + 4x – 21 = 0. Gimana gengs, mudah bukan caranya? Cukup dengan mensubstitusi nilai akar-akarnya dan sedikit melakukan operasi aljabar, kamu sudah bisa mendapatkan persamaan kuadratnya. Yuk, kita lanjut ke metode kedua, ya! 2. Cara Menyusun Persamaan Kuadrat Jika Diketahui Jumlah dan Hasil Kali Akar-akarnya Misalkan, akar-akar suatu persamaan kuadrat adalah x1 dan x2. Jika yang diketahui pada soal adalah jumlah dan hasil kali akar-akarnya, maka untuk mendapatkan persamaan kuadratnya, kamu bisa gunakan rumus berikut ini Nah, sebenarnya, bentuk persamaan x2 – x1 + x2x + x1 . x2 = 0 merupakan hasil kali silang dari persamaan x – x1x – x2 = 0, yang kita gunakan untuk mencari persamaan kuadrat di metode sebelumnya. Penjabarannya, bisa kamu lihat pada gambar di bawah ini, nih. Terus, kenapa sih bisa dapat x1 + x2= -b/a dan x1 . x2 = c/a? Berawal dari persamaan x2 – x1 + x2x + x1 . x2 = 0, kemudian masing-masing ruas dikalikan dengan konstanta a, sehingga persamaan tersebut menjadi sebagai berikut ax2 – ax1 + x2x + ax1 . x2 = 0 Setelah itu, disamain deh dengan bentuk umum persamaan kuadrat, sehingga diperoleh Dari penjabaran itu lah rumus hasil jumlah dan kali akar-akar persamaan kuadrat berasal. Gimana, sudah paham ya dengan konsep rumusnya? Oke, sekarang, kita perhatikan contoh soal dibawah ini, ya! Contoh soal 2 Tentukan persaman kuadrat yang akar-akarnya adalah Ξ± dan Ξ², serta jumlah dan hasil kali akar-akarnya adalah -1 dan -20. Penyelesaian Diketahui akar-akarnya adalah x1 dan x2. Kemudian, hasil jumlah akar-akarnya adalah -1, berarti x1 + x2 = -1. Lalu, hasil kali akar-akarnya adalah -20, berarti x1 . x2 = – 20. Nah, kamu bisa langsung substitusi hasil jumlah dan kali akar-akar yang sudah diketahui ke persamaan x2 – x1 + x2x + x1 . x2 = 0 Sehingga persamaannya menjadi seperti berikut x2 – -1x + -20 = 0 x2 + x – 20 = 0 Jadi, diperoleh persamaan kuadratnya adalah x2 + x -20 = 0. Baca Juga Cara Menghitung Luas dan Volume Bola Contoh soal 3 Susunlah persamaan kuadrat yang akar-akarnya 3 kali akar-akar persamaan persamaan kuadrat 2x2 + 5x – 3 = 0. Penyelesaian Karena akar persamaan kuadrat yang baru adalah transformasi akar persamaan kuadrat yang lama, kita bisa gunakan metode substitusi. Apa sih maksudnya transformasi? Maksudnya, dua-duanya berubahnya sama gitu. Di sini, kedua akarnya sama-sama 3 kali akar-akar yang lama. Biar nggak bingung, kita pakai variabel p untuk persamaan kuadrat yang baru. Nah, jadinya p = 3x atau kalau kita mau x dalam p, jadinya x = 1/3 p. Langsung aja kita substitusiin ya, 2x2 + 5x – 3 = 0 21/3p2 + 51/3p – 3 = 0 2/9p2 + 5/3p – 3 = 0 kedua ruas kita kalikan dengan 9 2p2 + 15p – 27 = 0 Sehingga, persamaan kuadrat baru yang akar-akarnya 3 kali persamaan kuadrat 2x2 + 5x – 3 = 0 adalah 2p2 + 15p – 27 = 0. Kalau mau ditulis lagi dalam x juga nggak papa. Jadinya, 2x2 + 15x – 27 = 0. Contoh soal 4 Diketahui akar-akar persamaan kuadrat x2 + qx + r = 0 adalah x1 dan x2, dimana x1 < x2. Tentukan persamaan kuadrat dengan akar x1 + 2 dan x2 – 2. Penyelesaian Nah, kalau soalnya kayak gini, nggak bisa pake metode substitusi tadi. Soalnya, x1 dan x2 berubahnya beda. Ada yang ditambah 2, ada yang dikurangi 2. Terus, gimana, dong? Tenang. Akar-akar persamaan kuadrat x2 + 3x -10 = 0 adalah x1 dan x2. Kita langsung faktorin aja persamaan kuadratnya, ya. Jadinya, x2 + 3x -10 = 0 x-2x+5 = 0 Sehingga, diperoleh akar-akarnya, yaitu x = -5 atau x = 2. Nah, di soal diketahui kalau x1 < x2. Akar yang lebih kecil yang mana? -5 kan ya. Jadi, x1 = -5 dan x2 = 2. Untuk mencari persamaan kuadrat yang barunya, kita bisa gunakan rumus x – x1x – x2 = 0. Karena diketahui di soal kalau akar-akarnya x1 + 2 dan x2 – 2, berarti [x – x1 + 2][x – x2 – 2]=0 Kita substitusi nilai x1 dan x2 yang kita dapatkan barusan, sehingga [x – -5 + 2][x – 2 – 2]=0 x-3x-0 = 0 x+3x = 0 kita kali silang x2 + 3x = 0 Jadi, persamaan kuadrat dengan akar x1 + 2 dan x2 – 2 adalah x2 + 3x = 0. Oke, contoh soalnya sudah ada empat, nih. Bisa dong sekarang kalau diminta menyusun persamaan kuadrat. Huehehe… Gengs, sadar nggak sih, salah satu kunci agar pandai dalam matematika itu adalah banyak mengerjakan latihan soal. Dengan begitu, logika berpikir kamu akan semakin terasah, rumus-rumus yang sering digunakan pun akan melekat di otak kamu dengan sendirinya. Selain itu, kamu juga bisa bertemu dengan berbagai macam variasi soal. Jadi, pemahaman materi kamu akan semakin dalam. Nah, kamu bisa lho cobain latihan berbagai macam soal di ruangbelajar. Di sana latihan soalnya lengkap dan ada pembahasannya juga. So, tunggu apa lagi? Buruan gabung sekarang juga! Sumber Referensi Wagiyo, A. Mulyono, S. and Susanto, 2008 Pegangan Belajar Matematika 3. Jakarta Pusat Perbukuan, Departemen Pendidikan Nasional. bentuksederhana dari 12 akar 5 , per 6 akar 2 Γ— 7 akar 10 . Mau dijawab kurang dari 3 menit? Coba roboguru plus! 70. 2. Jawaban terverifikasi. RF. R. Febrianti. Mahasiswa/Alumni Universitas Negeri Malang. 26 November 2021 03:15. bentuk sederhana dari 12 akar 5 , per 6 akar 2 Γ— 7 akar 10

Artikel Matematika kelas 9 ini menjelaskan tentang bentuk akar dalam matematika, meliputi pengertian, sifat-sifat, dan cara merasionalkannya. β€” Apa yang terlintas dalam pikiranmu saat mendengar kata akar? Mungkin kamu membayangkan sebuah pohon yang ditopang oleh akar yang kokoh. Tapi, adakah di antara kamu yang terpikir akar dalam bentuk matematika? Nah, yang akan kita bahas kali ini adalah bentuk akar dalam matematika, ya. Lalu, apa yang dimaksud dengan bentuk akar itu? Dalam matematika, bentuk akar merupakan suatu operasi aljabar yang dapat digunakan untuk menyelesaikan masalah bilangan. Bentuk akar memiliki sifat-sifat khusus dan dapat dirasionalkan. Apa saja sifat-sifat itu dan bagaimana cara merasionalkan bentuk akar? Simak penjelasan berikut, yuk! Mengenal Bentuk Akar Bentuk akar adalah akar dari suatu bilangan rasional yang hasilnya berupa bilangan irasional. Hayo, kamu masih ingat nggak nih dengan bilangan rasional dan irasional? Kalo lupa, bisa baca-baca artikelnya di link ini, ya. Bentuk akar merupakan bentuk lain untuk menyatakan bilangan berpangkat pecahan. Bilangan bentuk akar akan berada dalam tanda β€œβˆšβ€, atau bisa kita sebut sebagai tanda akar. Aku kasih contoh deh biar kamu nggak bingung. Misalnya, ada bilangan berpangkat 21/2. Nah, bilangan berpangkat 21/2 kalo kita ubah ke bentuk akar, jadinya akan seperti ini 21/2 a = 2, m = 1, n = 2 21/2 = atau √2 Fyi nih, kalo indeks akarnya bernilai 2, nggak perlu kamu tulis juga nggak papa, ya. Contoh bentuk akar yang lain di antaranya √6, √7, √11, dan masih banyak lagi. Coba aku tanya, √25 itu termasuk bentuk akar atau bukan, sih? Eits! Jawabannya bukan bentuk akar. Kenapa? Ingat definisinya, bentuk akar itu berupa bilangan irasional, sedangkan √25 bisa kita sederhanakan menjadi √52 = 52/2 = 5 5 adalah bilangan rasional. Jadi, √25 bukan bentuk akar. Paham, ya? Baca Juga Cara Menyelesaikan Persamaan Kuadrat Sifat-Sifat Bentuk Akar Seperti halnya bilangan berpangkat, bilangan bentuk akar juga memiliki sifat-sifat tertentu, lho! Sifat-sifat ini akan memudahkan kita dalam melakukan operasi aljabar yang melibatkan bentuk akar nantinya. Sifat-sifat bentuk akar, di antaranya sebagai berikut Nah, setelah kamu mengetahui maksud dari bentuk akar dan sifat-sifatnya, selanjutnya, kita ketahui cara merasionalkan bentuk akar, yuk! Sebeneranya, merasionalkan bentuk akar tuh apa, sih? Cara Merasionalkan Bentuk Akar Untuk memudahkan penggunaan bentuk akar dalam operasi aljabar, bentuk akar harus ditulis dalam bentuk yang paling rasional sederhana. Cara merasionalkan bentuk akar harus memenuhi syarat-syarat tertentu. Syarat-syarat tersebut antara lain sebagai berikut Terus, gimana nih kalo misalnya kita menemukan bentuk yang belum sederhana? Gimana cara menyederhanakan bentuk tersebut? Oke, tenang-tenang, aku bakal jelasin caranya di bawah ini. Kasus 1 Jika bilangan pokok memiliki pangkat lebih besar dari indeks akarnya. Nah, kalo kamu menemukan bentuk yang kayak gitu, dan bilangan pokoknya itu bernilai positif, maka kamu bisa jabarkan aja bentuk pangkatnya. Contoh 1 √x5 Bentuk akar √x5 belum sederhana karena pangkat bilangan pokoknya atau pangkat si x lebih besar dari indeks akarnya 5 > 2. Jadi, untuk menyederhanakan bentuk tersebut, kita jabarkan aja pangkat si x nya. Karena, indeks akarnya itu bernilai 2, maka bisa kita jabarkan kayak gini Ingat sifat bentuk akar, ya! Kalo ada operasi perkalian dalam akar, bisa kita pecah jadi seperti ini Nah, √x4 itu sama aja dengan x4/2, sehingga bisa disederhanakan menjadi x2. Jadi, Gimana, paham ya cara menyederhanakannya? Contoh lagi, deh! Baca Juga Cara Menyusun Persamaan Kuadrat dan Contohnya Contoh 2 √20 Kurang lebih cara penyederhanaannya sama kayak contoh 1 kok, teman-teman. Penjabarannya kayak gini, Itu cara penyederhanaan untuk kasus pertama, ya. Sekarang, kita masuk ke kasus kedua. Kasus 2 Pada bilangan pecahan, terdapat akar di bagian penyebut. Kalo kamu menemukan bentuk seperti itu, kamu bisa menyederhanakannya dengan mengalikan bilangan pecahan tersebut dengan bentuk akar yang sekawan dari penyebutnya. Maksudnya bentuk akar yang sekawan tuh gimana, ya? Bentuk akar sekawan itu berarti bentuk akarnya sama, cuma beda tanda operasinya aja. Nah, penjelasan lebih lengkapnya bisa kamu lihat pada gambar di bawah ini! Biar lebih paham, kita masuk ke contoh soal, ya! Contoh Soal Bentuk Akar Contoh Sederhanakan bentuk akar ! Untuk menyederhanakan bentuk akar tersebut, kita bisa kalikan dengan bentuk akar yang sekawan dari penyebutnya. Karena penyebutnya itu √x, berarti bentuk sekawannya juga √x. Jadi, penyelesaiannya akan seperti ini, Sudah paham? Kalo gitu, kita masuk ke kasus terakhir. Kasus 3 Jika di dalam akar memuat bilangan pecahan. Waduh, gimana nih kalo misalnya kita menemukan soal yang bentuknya kayak gitu? Tenang, kamu masih ingat dengan sifat bentuk akar di atas, kan? Kalo ada pecahan di dalam akar, maka bisa kita jabarkan kayak gini, Nah, karena setelah dijabarkan bentuknya menjadi seperti kasus nomer 2 ada akar di penyebut, jadi langkah selanjutnya bisa kita selesaikan seperti kasus nomer 2, teman-teman. Yup! Betul sekali, kita kalikan dengan bentuk akar sekawan penyebutnya. Langsung masuk ke contoh soal aja, deh. Contoh Rasionalkan bentuk akar ! Sesuai penjabaran di atas, kita pecah dulu ya bentuk akarnya jadi seperti ini, Kemudian, kita kalikan dengan bentuk akar sekawan pada penyebutnya. Ingat, pada penyebutnya loh ya, bukan pembilang. Sehingga, Begitu teman-teman cara merasionalkannya. Sudah paham belum nih sampai sini? Oke, supaya kamu bisa lebih menguasai materi ini, berikut aku kasih beberapa contoh soal. Bisa kamu kerjakan sendiri atau diskusi dengan teman sekolahmu, ya! Latihan Soal Bentuk Akar Sederhanakanlah bentuk akar berikut ini Nah, itulah penjelasan mengenai pengertian bentuk akar dalam matematika, sifat-sifat, dan cara merasionalkannya. Jangan lupa untuk terus berlatih soal-soal, ya. Kalo kamu masih ingin mempelajari lagi materi ini, langsung aja gunakan ruangbelajar. Kamu bisa belajar sambil menonton video animasi lengkap dengan soal, pembahasan, dan rangkumannya. Yuk, belajar jadi hebat dengan Ruangguru! Referensi Subchan, Winarni, Hanafi L, dkk. 2015 Matematika SMP/MTs Kelas IX Semester 1. Jakarta Kementerian Pendidikan dan Kebudayaan Artikel ini pertama kali dibuat oleh Karina Dwi Adistiana dan diperbarui oleh Hani Ammariah pada 27 Juli 2021.

u4uro.
  • v36d6s0vqs.pages.dev/395
  • v36d6s0vqs.pages.dev/211
  • v36d6s0vqs.pages.dev/336
  • v36d6s0vqs.pages.dev/120
  • v36d6s0vqs.pages.dev/484
  • v36d6s0vqs.pages.dev/296
  • v36d6s0vqs.pages.dev/306
  • v36d6s0vqs.pages.dev/333
  • akar 12 x akar 6